
Heavy-Light Decomposition
IOI Training Camp 2 - 2024
Noah Jacobsen

CSES 1137 - Subtree Queries
Given a tree consisting of nodes, answer
queries of the form:

1. Change the value of node to

2. Find the sum of all nodes in the subtree of

N Q

s v

s

CSES 1137 - Subtree Queries
Given a tree consisting of nodes, answer
queries of the form:

1. Change the value of node to

2. Find the sum of all nodes in the subtree of

N Q

s v

s

CSES 1137 - Subtree Queries

Solution: Just an
Euler tour then a
segment tree

Given a tree consisting of nodes, answer
queries of the form:

1. Change the value of node to

2. Find the sum of all nodes in the subtree of

N Q

s v

s

CSES 2134 - Path Queries II
N Q

s v

Given a tree consisting of nodes, answer
queries of the form:

1. Change the value of node to

2. Find the maximum value of all nodes along
the path between two nodes , a b

Given a tree consisting of nodes, answer
queries of the form:

1. Change the value of node to

2. Find the maximum value of all nodes along
the path between two nodes ,

CSES 2134 - Path Queries II
N Q

s v

a b

CSES 2134 - Path Queries II

Solution: Not just
an Euler tour then a
segment tree

N Q

s v

Given a tree consisting of nodes, answer
queries of the form:

1. Change the value of node to

2. Find the maximum value of all nodes along
the path between two nodes , a b

Basic Heavy-Light Decomposition

Then v is a heavy child of u ⟺ s(v) ≥
s(u)

2

We start with some definitions:

Let s(u) denote the size of the subtree of u .

All other children are called light.

We call the edge leading to a heavy child a
heavy edge. All other edges are labeled
light.

Basic Heavy-Light Decomposition

Then v is a heavy child of u ⟺ s(v) ≥
s(u)

2

We start with some definitions:

Let s(u) denote the size of the subtree of u .

All other children are called light.

We call the edge leading to a heavy child a
heavy edge. All other edges are labeled
light.

An example of this decomposition: Heavy edges are thicker

Basic Heavy-Light Decomposition
We root the tree arbitrarily. Now consider all
vertices which have no heavy children. We visit
its parents until we encounter either the root
node or a light edge. This splits the tree up into
several paths on which we can process queries.
We call these paths heavy paths. In the example
the heavy paths are colored.

Importantly, this decomposition of our tree into
paths satisfies two nice properties: All paths are
disjoint, and the path from the root to any child
uses no more than paths.O(log n)

We can now answer queries in time by
building a segment tree on each path and using
LCA queries!

O(log2 n)

Basic Heavy-Light Decomposition
We root the tree arbitrarily. Now consider all
vertices which have no heavy children. We visit
its parents until we encounter either the root
node or a light edge. This splits the tree up into
several paths on which we can process queries.
We call these paths heavy paths. In the example
the heavy paths are colored.

Importantly, this decomposition of our tree into
paths satisfies two nice properties: All paths are
disjoint, and the path from the root to any child
uses no more than paths.O(log n)

We can now answer queries in time by
building a segment tree on each path and using
LCA queries!

O(log2 n)

Implementation

struct hld {
int n;
vector<int> par, heavy, depth, root, pos;
segtree st;

int dfs(int u, int p, vector<vector<int>>& e);

hld(int n, vector<int>& v, vector<vector<int>>& e);

int query(int a, int b);

void update(int n, int v);

};

To make implementation easier, rather than using multiple segment trees, we
combine them all into a single segment tree. We also do not separately answer
LCA queries: We walk up to the LCA in a method similar to binary lifting. Finally,
we change the definition of a heavy child to mean the child with the largest
subtree, with ties broken arbitrarily. The basic structure of a HLD data structure:

Implementation
Initialization: DFS of the tree

 int dfs(int u, int p, vector<vector<int>>& e) {
int sz=1, m=0;
for (auto v : e[u]) {
if (v==p) continue;
depth[v]=depth[u]+1, par[v]=u;
int t=dfs(v, u, e);
if (t>m) heavy[u]=v, m=t;
sz+=t;

}
return sz;

}

Implementation
Initialization: Constructing the Heavy Paths

hld(int n, vector<int>& v, vector<vector<int>>& e) {
this->n=n;
heavy.assign(n+1, 0); depth.assign(n+1, 0);
root.assign(n+1, 0); pos.assign(n+1, 0);
par.assign(n+1, 0); par[1]=1;
dfs(1, 1, e);
vector<int> a;
for (int i=1, t=1; i <= n; ++i) {
if (i==1 || heavy[par[i]]!=i) {
for (int j = i; j; j=heavy[j]) {
root[j]=i;
pos[j]=t++;
a.push_back(v[j]);

}
}

}
st.init(n, a);

 }

We loop through all nodes. If
some node is not the heavy
child of some other node,
then the edge to its parent
must be light, and therefore
the node must be the root of
a heavy path. We then keep
descending to the heavy
children until we reach a leaf.
This ensures that all heavy
paths are continuous sections
of the array.

Implementation
Answering Queries

 int query(int a, int b) {
int s=0;
while (root[a]!=root[b]) {
if (depth[root[a]]>depth[root[b]]) swap(a, b);
s=max(s, st.query(pos[root[b]], pos[b]));
b=par[root[b]];

}
if (depth[a]>depth[b]) swap(a, b);
s=max(s, st.query(pos[a], pos[b]));
return s;

}

void update(int n, int v) {
st.update(pos[n], v);

}

Path Queries Update Queries

Implementation
Basic segment tree implementation (not important)

struct segtree {
int n;
vector<int> st;

void init(int a, vector<int>& v) {

n=a;
st.assign(2*n, 0);
for (int i = n; i < 2*n; ++i) st[i]=v[i-n];
for (int i = n-1; i > 0; --i) st[i]=max(st[2*i],st[2*i+1]);

}

int query(int a, int b) {
int s=0;
a+=n-1; b+=n-1;
while (a<=b) {

if (a%2==1) s=max(s, st[a++]);
if (b%2==0) s=max(s, st[b--]);
a/=2; b/=2;

} return s;
}

void update(int p, int v) {

for (st[p+=n-1]=v; p>1; p/=2) st[p/2]=max(st[p],st[p^1]);
}

};

CSES 1735 - Range Updates and Sums
Given an array of elements, answer queries
of the form:

1. Increase each value in the range by

2. Set each value in the range to

3. Find the sum of all values in the range

[a, b]

[a, b]

[a, b]

N Q

v

v

Solution: Lazy
Segment trees

CSES 1735 - Range Updates and Sums
Given an array of elements, answer queries
of the form:

1. Increase each value in the range by

2. Set each value in the range to

3. Find the sum of all values in the range

[a, b]

[a, b]

[a, b]

N Q

v

v

Lazy Segment Trees
When updating a range, we don’t immediately update the
segment tree: We only update when strictly necessary. At each
node , we store the value that stores a pending update that
has yet to be pushed down to its children. When it becomes
necessary to update a node, we push down the update to its
children where the update can remain pending until it needs to be
pushed down further.

s lz[s]

We are therefore required to implement a push function that takes
a node and propagates an update to its children. However, a
child could already have a pending update, and we cannot simply
overwrite it. We therefore need a second function that takes two
pending updates and combines it into one.

Example of Lazy Propagation
Add 7 to the range [3, 8]

14

13

6

1

4 -3

18

3 0 2 1

32

7

3, 3 3, 3

Example of Lazy Propagation

14

13

6

1

4 -3

3, 3

3 0

3, 3

2 1

32

7

18

Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32

Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32

Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32

Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32

Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32

Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32

Example of Lazy Propagation

14

13

6

1, 7

4 -3 3 0 2 17

Add lazy update

3, 3 3, 3

18

32

Example of Lazy Propagation

14

13

6

15, 0

4, 7 -3, 7 3 0 2 17

Push lazy update down

3, 3 3, 3

18

32

Example of Lazy Propagation

14

13

6

15

4, 7 -3, 7 3 0 2 17

3, 3 3, 3

18

32

Example of Lazy Propagation

28

13

6

15

4, 7 -3, 7 3 0 2 17

Recalculate node

3, 3 3, 3

18

32

Example of Lazy Propagation

28

13

6

15

4, 7 -3, 7 3 0 2 17

3, 3 3, 3

18

32

Example of Lazy Propagation

28

13

6

15

4, 7 -3, 7

18

3 0 2 17

3, 3 3, 3

32

Example of Lazy Propagation

28

13

6

15

4, 7 -3, 7

18

3 0

3, 3

2 17

3, 3

32

Example of Lazy Propagation

28

13

6

15

4, 7 -3, 7

18, 7

3, 3

3 0

3, 3

2 17

Add lazy update
32

Example of Lazy Propagation

28

13

6

15

4, 7 -3, 7

46, 0

3, 10

3 0

3, 10

2 17

Push lazy update down, combine
updates

32

Example of Lazy Propagation

28

13

6

15

4, 7 -3, 7

46

3, 10

3 0

3, 10

2 17

32

Example of Lazy Propagation

28

13

6

15

4, 7 -3, 7

46

3, 10

3 0

3, 10

2 1

74

7

Recalculate node

Example of Lazy Propagation

28

13

6

15

4, 7 -3, 7

46

3, 10

3 0

3, 10

2 1

74

7

Implementation

struct lazy {
int n;
vector<int> st, lza, lzs;

lazy(int a) {

n=a;
while (n&(n-1)) n++;
vector<int> b(2*n), c(2*n, 0), d(2*n, 0);
for (int i = n; i < n+a; ++i) cin >> b[i];
for (int i = n-1; i > 0; --i) b[i]=b[2*i]+b[2*i+1];
swap(st, b); swap(lza, c); swap(lzs, d);

}

void push(int n, int l, int r) {
if (lzs[n]) {

st[n]=(r-l+1)*(lzs[n]+lza[n]);
if (n<this->n) {

lzs[2*n]=lzs[2*n+1]=lzs[n]+lza[n];
lza[2*n]=lza[2*n+1]=0;

} lzs[n]=lza[n]=0;
} else {

st[n]+=(r-l+1)*lza[n];
if (n<this->n) {

lza[2*n]+=lza[n];
lza[2*n+1]+=lza[n];

} lza[n]=0;
}

}

void add(int a, int b, int v, int n=1, int l=1, int r=-1) {
if (n==1) r=this->n;
push(n, l, r);
if (r<a || b<l) return;
if (a<=l && r<=b) { lza[n]+=v; push(n, l, r); return; }
st[n]+=(min(b, r)-max(a, l)+1)*v;
add(a, b, v, 2*n, l, (l+r)/2);
add(a, b, v, 2*n+1, (l+r)/2+1, r);

}

void set(int a, int b, int v, int n=1, int l=1, int r=-1) {
if (n==1) r=this->n;
push(n, l, r);
if (r<a || b<l) return;
if (a<=l && r<=b) { lzs[n]=v; lza[n]=0; push(n, l, r); return; }
set(a, b, v, 2*n, l, (l+r)/2);
set(a, b, v, 2*n+1, (l+r)/2+1, r);
st[n]=st[2*n]+st[2*n+1];

}

int query(int a, int b, int n=1, int l=1, int r=-1) {
if (n==1) r=this->n;
push(n, l, r);
if (r<a || b<l) return 0;
if (a<=l && r<=b) return st[n];
return query(a, b, 2*n, l, (l+r)/2) + query(a, b, 2*n+1, (l+r)/2+1, r);

}
};

Not important here but worth mentioning

Slightly Harder Heavy-Light Decomposition
Given a tree consisting of nodes, answer
queries of the form:

1. Increase the value of all nodes along the path
from to by

2. Change the value of all nodes along the path
from to to

3. Find the maximum value of all nodes along
the path between two nodes ,

N Q

a b

a b

v

a b v

Solution: Lazy Segment
trees with heavy-light
decomposition

Slightly Harder Heavy-Light Decomposition
N Q

a b v

a b v

Given a tree consisting of nodes, answer
queries of the form:

1. Increase the value of all nodes along the path
from to by

2. Change the value of all nodes along the path
from to to

3. Find the maximum value of all nodes along
the path between two nodes , a b

Ok but what about subtree queries

HLD with subtree queries

Given a tree consisting of nodes, answer
queries of the form:

1. Do something to all nodes along the path
from to

2. Do something to all nodes in the subtree of

3. Find some value representing all nodes along
the path between two nodes ,

4. Find some value representing all nodes in the
subtree of

N Q

a b

s

a b

s

Solution: Move
on to the next
problem

Given a tree consisting of nodes, answer
queries of the form:

1. Do something to all nodes along the path
from to

2. Do something to all nodes in the subtree of

3. Find some value representing all nodes along
the path between two nodes ,

4. Find some value representing all nodes in the
subtree of

N Q

a b

s

a b

s

HLD with subtree queries

It can be done!
If we perform an Euler tour of the tree, but always visit the heavy child first, then
we still represent heavy paths as continuous parts of the array, and further
maintain the property that a subtree is still a continuous part of the array (the
whole point of the Euler tour). By recording the exit time of a node we can then
query subtrees too! We can combine this with a lazy segment tree to update
and query subtrees and paths.

 void dfs_sz(int u, int p) {
sz[u]=1;
for (auto &v : e[u]) {
if (v==p) continue;
dep[v]=dep[u]+1; par[v]=u;
dfs_sz(v, u);
sz[u]+=sz[v];
if (sz[v] > sz[e[u][0]]) {
swap(v, e[u][0]);

}
}

}

 void dfs_hld(int u, int p) {
in[u]=t++;
a.push_back(v[u]);
for (auto v : e[u]) {
if (v==p) continue;
nxt[v]=(v==e[u][0]?nxt[u]:v);
dfs_hld(v, u);

} out[u]=t;
}

Example Problems
• CSES 2134: https://cses.fi/problemset/task/2134

• USACO Gold 2019: http://www.usaco.org/index.php?page=viewproblem2&cpid=921

• USACO Gold 2019: http://www.usaco.org/index.php?page=viewproblem2&cpid=970

• USACO Platinum 2018: http://www.usaco.org/index.php?page=viewproblem2&cpid=842

• SPOJ: https://www.spoj.com/problems/QTREE/

• Library Checker: https://judge.yosupo.jp/problem/vertex_set_path_composite

• CF Round 601: https://codeforces.com/contest/1254/problem/D

• JOI 2013: https://oj.uz/problem/view/JOI13_synchronization

• JOI 2018: https://oj.uz/problem/view/JOI18_catdog

https://cses.fi/problemset/task/2134
http://www.usaco.org/index.php?page=viewproblem2&cpid=921
http://www.usaco.org/index.php?page=viewproblem2&cpid=970
http://www.usaco.org/index.php?page=viewproblem2&cpid=842
https://www.spoj.com/problems/QTREE/
https://judge.yosupo.jp/problem/vertex_set_path_composite
https://codeforces.com/contest/1254/problem/D
https://oj.uz/problem/view/JOI13_synchronization
https://oj.uz/problem/view/JOI18_catdog

