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CSES 1137 - Subtree Queries
Given a tree consisting of     nodes, answer  
queries of the form:


1. Change the value of node    to 


2. Find the sum of all nodes in the subtree of 
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CSES 1137 - Subtree Queries

Solution: Just an 
Euler tour then a 
segment tree

Given a tree consisting of     nodes, answer  
queries of the form:
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CSES 2134 - Path Queries II
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Given a tree consisting of     nodes, answer  
queries of the form:


1. Change the value of node    to 


2. Find the maximum value of all nodes along 
the path between two nodes   , a b
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CSES 2134 - Path Queries II

Solution: Not just 
an Euler tour then a 
segment tree

N Q

s v

Given a tree consisting of     nodes, answer  
queries of the form:


1. Change the value of node    to 


2. Find the maximum value of all nodes along 
the path between two nodes   , a b



Basic Heavy-Light Decomposition

Then v is a heavy child of u ⟺ s(v) ≥
s(u)

2

We start with some definitions:

Let s(u) denote the size of the subtree of u .

All other children are called light.

We call the edge leading to a heavy child a 
heavy edge. All other edges are labeled 
light.



Basic Heavy-Light Decomposition

Then v is a heavy child of u ⟺ s(v) ≥
s(u)

2

We start with some definitions:

Let s(u) denote the size of the subtree of u .

All other children are called light.

We call the edge leading to a heavy child a 
heavy edge. All other edges are labeled 
light.

An example of this decomposition: Heavy edges are thicker



Basic Heavy-Light Decomposition
We root the tree arbitrarily. Now consider all 
vertices which have no heavy children.  We visit 
its parents until we encounter either the root 
node or a light edge. This splits the tree up into 
several paths on which we can process queries. 
We call these paths heavy paths. In the example 
the heavy paths are colored.

Importantly, this decomposition of our tree into 
paths satisfies two nice properties: All paths are 
disjoint, and the path from the root to any child 
uses no more than               paths.O(log n)

We can now answer queries in                time by 
building a segment tree on each path and using 
LCA queries!

O(log2 n)
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Implementation

struct hld {
int n;
vector<int> par, heavy, depth, root, pos;
segtree st;

 
int dfs(int u, int p, vector<vector<int>>& e);

 
hld(int n, vector<int>& v, vector<vector<int>>& e);

 
int query(int a, int b);

 
void update(int n, int v);

};

To make implementation easier, rather than using multiple segment trees, we 
combine them all into a single segment tree. We also do not separately answer 
LCA queries: We walk up to the LCA in a method similar to binary lifting. Finally, 
we change the definition of a heavy child to mean the child with the largest 
subtree, with ties broken arbitrarily. The basic structure of a HLD data structure:



Implementation
Initialization: DFS of the tree

  int dfs(int u, int p, vector<vector<int>>& e) {
int sz=1, m=0;
for (auto v : e[u]) {
if (v==p) continue;
depth[v]=depth[u]+1, par[v]=u;
int t=dfs(v, u, e);
if (t>m) heavy[u]=v, m=t;
sz+=t;

}
return sz;

}



Implementation
Initialization: Constructing the Heavy Paths

hld(int n, vector<int>& v, vector<vector<int>>& e) {
this->n=n;
heavy.assign(n+1, 0); depth.assign(n+1, 0);
root.assign(n+1, 0); pos.assign(n+1, 0);
par.assign(n+1, 0); par[1]=1;
dfs(1, 1, e);
vector<int> a;
for (int i=1, t=1; i <= n; ++i) {
if (i==1 || heavy[par[i]]!=i) {
for (int j = i; j; j=heavy[j]) {
root[j]=i;
pos[j]=t++;
a.push_back(v[j]);

}
}

}
st.init(n, a);

  }

We loop through all nodes. If 
some node is not the heavy 
child of some other node, 
then the edge to its parent 
must be light, and therefore 
the node must be the root of 
a heavy path. We then keep 
descending to the heavy 
children until we reach a leaf. 
This ensures that all heavy 
paths are continuous sections 
of the array.



Implementation
Answering Queries

  int query(int a, int b) {
int s=0;
while (root[a]!=root[b]) {
if (depth[root[a]]>depth[root[b]]) swap(a, b);
s=max(s, st.query(pos[root[b]], pos[b]));
b=par[root[b]];

}
if (depth[a]>depth[b]) swap(a, b);
s=max(s, st.query(pos[a], pos[b]));
return s;

}

void update(int n, int v) {
st.update(pos[n], v);

}

Path Queries Update Queries



Implementation
Basic segment tree implementation (not important)

struct segtree {
int n;
vector<int> st;

 
void init(int a, vector<int>& v) {

n=a;
st.assign(2*n, 0);
for (int i = n; i < 2*n; ++i) st[i]=v[i-n];
for (int i = n-1; i > 0; --i) st[i]=max(st[2*i],st[2*i+1]);

}
 

int query(int a, int b) {
int s=0;
a+=n-1; b+=n-1;
while (a<=b) {

if (a%2==1) s=max(s, st[a++]);
if (b%2==0) s=max(s, st[b--]);
a/=2; b/=2;

} return s;
}

 
void update(int p, int v) {

for (st[p+=n-1]=v; p>1; p/=2) st[p/2]=max(st[p],st[p^1]);
}

};



CSES 1735 -  Range Updates and Sums
Given an array of    elements, answer    queries 
of the form:


1. Increase each value in the range          by  


2. Set each value in the range          to  


3. Find the sum of all values in the range

[a, b]
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[a, b]
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Solution: Lazy 
Segment trees

CSES 1735 -  Range Updates and Sums
Given an array of    elements, answer    queries 
of the form:
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Lazy Segment Trees
When updating a range, we don’t immediately update the 
segment tree: We only update when strictly necessary. At each 
node , we store the value  that stores a pending update that 
has yet to be pushed down to its children. When it becomes 
necessary to update a node, we push down the update to its 
children where the update can remain pending until it needs to be 
pushed down further.

s lz[s]

We are therefore required to implement a push function that takes 
a node and propagates an update to its children. However, a 
child could already have a pending update, and we cannot simply 
overwrite it. We therefore need a second function that takes two 
pending updates and combines it into one.



Example of Lazy Propagation
Add 7 to the range [3, 8]

14

13

6

1

4 -3

18

3 0 2 1

32

7

3, 3 3, 3



Example of Lazy Propagation

14

13

6

1

4 -3

3, 3

3 0

3, 3

2 1

32

7

18



Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32



Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32



Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32



Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32



Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32



Example of Lazy Propagation

14

13

6

1

4 -3 3 0 2 17

3, 3 3, 3

18

32



Example of Lazy Propagation

14

13

6

1, 7

4 -3 3 0 2 17

Add lazy update

3, 3 3, 3

18

32
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Implementation

struct lazy {
int n;
vector<int> st, lza, lzs;

 
lazy(int a) {

n=a;
while (n&(n-1)) n++;
vector<int> b(2*n), c(2*n, 0), d(2*n, 0);
for (int i = n; i < n+a; ++i) cin >> b[i];
for (int i = n-1; i > 0; --i) b[i]=b[2*i]+b[2*i+1];
swap(st, b); swap(lza, c); swap(lzs, d);

}
 

void push(int n, int l, int r) {
if (lzs[n]) {

st[n]=(r-l+1)*(lzs[n]+lza[n]);
if (n<this->n) {

lzs[2*n]=lzs[2*n+1]=lzs[n]+lza[n];
lza[2*n]=lza[2*n+1]=0;

} lzs[n]=lza[n]=0;
} else {

st[n]+=(r-l+1)*lza[n];
if (n<this->n) {

lza[2*n]+=lza[n];
lza[2*n+1]+=lza[n];

} lza[n]=0;
}

}

void add(int a, int b, int v, int n=1, int l=1, int r=-1) {
if (n==1) r=this->n;
push(n, l, r);
if (r<a || b<l) return;
if (a<=l && r<=b) { lza[n]+=v; push(n, l, r); return; }
st[n]+=(min(b, r)-max(a, l)+1)*v;
add(a, b, v, 2*n, l, (l+r)/2);
add(a, b, v, 2*n+1, (l+r)/2+1, r);

}
 

void set(int a, int b, int v, int n=1, int l=1, int r=-1) {
if (n==1) r=this->n;
push(n, l, r);
if (r<a || b<l) return;
if (a<=l && r<=b) { lzs[n]=v; lza[n]=0; push(n, l, r); return; }
set(a, b, v, 2*n, l, (l+r)/2);
set(a, b, v, 2*n+1, (l+r)/2+1, r);
st[n]=st[2*n]+st[2*n+1];

}
 

int query(int a, int b, int n=1, int l=1, int r=-1) {
if (n==1) r=this->n;
push(n, l, r);
if (r<a || b<l) return 0;
if (a<=l && r<=b) return st[n];
return query(a, b, 2*n, l, (l+r)/2) + query(a, b, 2*n+1, (l+r)/2+1, r);

}
};

Not important here but worth mentioning



Slightly Harder Heavy-Light Decomposition
Given a tree consisting of     nodes, answer     
queries of the form:


1. Increase the value of all nodes along the path 
from    to    by  


2. Change the value of all nodes along the path 
from    to    to 


3. Find the maximum value of all nodes along 
the path between two nodes   , 
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Solution: Lazy Segment 
trees with heavy-light 
decomposition

Slightly Harder Heavy-Light Decomposition
N Q

a b v

a b v

Given a tree consisting of     nodes, answer     
queries of the form:


1. Increase the value of all nodes along the path 
from    to    by  


2. Change the value of all nodes along the path 
from    to    to 


3. Find the maximum value of all nodes along 
the path between two nodes   , a b



Ok but what about subtree queries



HLD with subtree queries 

Given a tree consisting of     nodes, answer    
queries of the form:


1. Do something to all nodes along the path 
from    to   


2. Do something to all nodes in the subtree of  


3. Find some value representing all nodes along 
the path between two nodes   , 


4. Find some value representing all nodes in the 
subtree of 

N Q

a b

s

a b

s



Solution: Move 
on to the next 
problem

Given a tree consisting of     nodes, answer    
queries of the form:


1. Do something to all nodes along the path 
from    to   


2. Do something to all nodes in the subtree of  


3. Find some value representing all nodes along 
the path between two nodes   , 


4. Find some value representing all nodes in the 
subtree of 

N Q

a b

s

a b

s

HLD with subtree queries 



It can be done!
If we perform an Euler tour of the tree, but always visit the heavy child first, then 
we still represent heavy paths as continuous parts of the array, and further 
maintain the property that a subtree is still a continuous part of the array (the 
whole point of the Euler tour). By recording the exit time of a node we can then 
query subtrees too! We can combine this with a lazy segment tree to update 
and query subtrees and paths.

  void dfs_sz(int u, int p) {
sz[u]=1;
for (auto &v : e[u]) {
if (v==p) continue;
dep[v]=dep[u]+1; par[v]=u;
dfs_sz(v, u);
sz[u]+=sz[v];
if (sz[v] > sz[e[u][0]]) {
swap(v, e[u][0]);

}
}

}

  void dfs_hld(int u, int p) {
in[u]=t++;
a.push_back(v[u]);
for (auto v : e[u]) {
if (v==p) continue;
nxt[v]=(v==e[u][0]?nxt[u]:v);
dfs_hld(v, u);

} out[u]=t;
}



Example Problems
• CSES 2134: https://cses.fi/problemset/task/2134


• USACO Gold 2019: http://www.usaco.org/index.php?page=viewproblem2&cpid=921


• USACO Gold 2019: http://www.usaco.org/index.php?page=viewproblem2&cpid=970


• USACO Platinum 2018: http://www.usaco.org/index.php?page=viewproblem2&cpid=842


• SPOJ: https://www.spoj.com/problems/QTREE/


• Library Checker: https://judge.yosupo.jp/problem/vertex_set_path_composite


• CF Round 601: https://codeforces.com/contest/1254/problem/D


• JOI 2013: https://oj.uz/problem/view/JOI13_synchronization


• JOI 2018: https://oj.uz/problem/view/JOI18_catdog

https://cses.fi/problemset/task/2134
http://www.usaco.org/index.php?page=viewproblem2&cpid=921
http://www.usaco.org/index.php?page=viewproblem2&cpid=970
http://www.usaco.org/index.php?page=viewproblem2&cpid=842
https://www.spoj.com/problems/QTREE/
https://judge.yosupo.jp/problem/vertex_set_path_composite
https://codeforces.com/contest/1254/problem/D
https://oj.uz/problem/view/JOI13_synchronization
https://oj.uz/problem/view/JOI18_catdog

